Rilpivirine-Tenofovir DF-Emtricitabine (Complera)

David H. Spach, MD
Brian R. Wood, MD

Last Updated: December 20, 2019
Rilpivirine-Emtricitabine-Tenofovir DF (Complera)

Complera
[kom-PLEH-rah]

Rilpivirine-Tenofovir DF-Emtricitabine
- 25 mg
- 300 mg
- 200 mg

- NNRTI
- NRTI
- NRTI

Dose: 1 tablet once daily with food

Image Source: AIDS Info.org
Rilpivirine-Tenofovir DF-Emtricitabine (*Complera*)

- **Complera Components:**
 - Rilpivirine 25 mg
 - Tenofovir disoproxil fumarate (DF): 300 mg
 - Emtricitabine: 200 mg

- **Dosing:** 1 tablet once daily with food

- **Common Adverse Events (≥2%)**
 - Depression, insomnia, headache
Rilpivirine-Tenofovir DF-Emtricitabine
Summary of Key Studies

- **Phase 3 Trials in Treatment Naïve**
 - ECHO: RPV + TDF-FTC versus EFV + TDF-FTC
 - THRIVE: RPV + 2NRTIs versus EFV + 2NRTIs
 - STaR: RPV-TDF-FTC versus EFV-TDF-FTC

- **Switch/Simplification Trials**
 - GS-264-0111: EFV-TDF-FTC versus RPV-TDF-FTC
 - SPIRIT: Switch to RPV-TDF-FTC from ritonavir-boosted PI + 2NRTIs
 - Near Rwanda: Switch to RPV-TDF-FTC from NVP-based regimen

- **HIV-HCV Coinfection**
 - hEPAtic: Hepatic safety of RPV-TDF-FTC in HIV-HCV Coinfection

- **Nonoccupational PEP**
 - EPEP: RPV-TDF-FTC for nonoccupational PEP in MSM
INITIAL THERAPY

Rilpivirine-Tenofovir DF-Emtricitabine
Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC

ECHO Trial
Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC
ECHO: Study Design

Study Design: ECHO Study

- **Background:** Randomized, double-blind, phase 3 trial comparing rilpivirine and efavirenz in combination with a fixed background regimen consisting of tenofovir DF-emtricitabine in treatment-naïve adult with HIV
- **Inclusion Criteria (n = 690)**
 - Antiretroviral-naïve adults
 - Age ≥18 years
 - HIV RNA ≥5000 copies/mL
 - No resistance to any study drugs
- **Treatment Arms**
 - Rilpivirine + Tenofovir DF-Emtricitabine
 - Efavirenz + Tenofovir DF-Emtricitabine

Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC

ECHO: Result

48 Week Virologic Response (ITT-TLOVR)

Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC

ECHO: Result

48 Week Virologic Failure and Discontinuations (ITT-TLOVR)

Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC
ECHO: Resistance Results

Incidence of NNRTI Resistance Associated Mutations (RAMs)

Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC
ECHO: Resistance Results

Incidence of NNRTI Resistance Associated Mutations (RAMs)

Rilpivirine + TDF-FTC versus Efavirenz + TDF-FTC

ECHO: Conclusions

Interpretation: “Rilpivirine showed non-inferior efficacy compared with efavirenz, with a higher virological-failure rate, but a more favourable safety and tolerability profile.”

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR Trial
Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC

STaR Study: Design

<table>
<thead>
<tr>
<th>Study Design: STaR Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background: Randomized, open label, phase 3b trial comparing safety and efficacy of two single-tablet regimens, RPV-TDF-FTC and EFV-TDF-FTC, in treatment-naive adults with HIV</td>
</tr>
<tr>
<td>Inclusion Criteria (n = 786)</td>
</tr>
<tr>
<td>- Antiretroviral-naive adults</td>
</tr>
<tr>
<td>- Age ≥18 years</td>
</tr>
<tr>
<td>- HIV RNA ≥2500 copies/mL</td>
</tr>
<tr>
<td>- No resistance to EFV, RPV, TDF, or FTC</td>
</tr>
<tr>
<td>Treatment Arms</td>
</tr>
<tr>
<td>- Rilpivirine-tenofovir DF-emtricitabine</td>
</tr>
<tr>
<td>- Efavirenz-tenofovir DF-emtricitabine</td>
</tr>
</tbody>
</table>

Rilpivirine-TDF-FTC QD
(n = 394)

Efavirenz-TDF-FTC QD
(n = 392)

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR: Result

Week 48 Virologic Response (Intent-to-Treat Analysis)

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR: Result

48 Week Virologic Outcomes

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR Study: Common Adverse Events

<table>
<thead>
<tr>
<th>Treatment Emergent Adverse Events in > 5% of Subjects in Either Arm</th>
<th>RPV-TDF-FTC (n = 392)</th>
<th>EFV-TDF-FTC (n = 394)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dizziness</td>
<td>6.6%</td>
<td>22.2%</td>
</tr>
<tr>
<td>Insomnia</td>
<td>9.6%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Somnolence</td>
<td>2.5%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Headache</td>
<td>12.4%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Abnormal Dreams</td>
<td>5.8%</td>
<td>24.5%</td>
</tr>
<tr>
<td>Depression</td>
<td>6.6%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>5.1%</td>
<td>8.4%</td>
</tr>
<tr>
<td>Folliculitis</td>
<td>5.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Rash</td>
<td>6.1%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

Conclusion: “In treatment-naive participants, RPV/FTC/TDF demonstrated noninferior efficacy and improved tolerability compared with EFV/FTC/TDF, as well as a statistically significant difference in efficacy for participants with baseline HIV-1 RNA 100,000 copies/ml or less at week 48.”

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR Trial: Week 96 Resistance Data
Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR Study: Result

Development of Genotypic Resistance at Week 48

Rilpivirine-TDF-FTC versus Efavirenz-TDF-FTC
STaR Study: Result

Development of Resistance to Study Drugs at 48 weeks, by Viral Load

Conclusions: “Among subjects in the primary resistance associated populations (RAP), resistance development to RPV/FTC/TDF consisted of NNRTI and NRTI mutations and was more frequent than resistance development to EFV/FTC/TDF. In subjects with baseline viral load ≤ 100,000 copies/mL, resistance development was low (<2%) for both RPV/FTC/TDF and EFV/FTC/TDF arms and less frequent compared with subjects with baseline viral load >100,000 copies/mL, for RPV/FTC/TDF.”
SWITCH STUDIES

Rilpivirine-Tenofovir DF-Emtricitabine
Switch from EFV-TDF-FTC to RPV-TDF-FTC

GS-264-0111
Switch from EFV-TDF-FTC to RPV-TDF-FTC

GS-264-0111: Study Design

Study Design: GS-264-0111 Study

Background: Open-label, phase 2b study evaluating the efficacy and safety of switching from EFV-TDF-FTC to RPV-TDF-FTC in virologically suppressed patients with HIV-1.

Inclusion Criteria (n = 49)
- Age ≥18 years
- On EFV-TDF-FTC for ≥3 months
- Experiencing efavirenz intolerance
- HIV RNA <50 copies/mL for ≥8 weeks
- No resistance to study drugs
- No proton pump inhibitor use
- CrCl ≥50 mL/min

Switch Arm
- Rilpivirine-tenofovir DF-emtricitabine

Switch from **EFV-TDF-FTC** to **RPV-TDF-FTC**

GS-264-0111: Result

Virologic Outcomes at Weeks 12, 24, and 48

HIV RNA <50 copies/mL (%)

- **12 Weeks**: 100/49
- **24 Weeks**: 100/49
- **48 Weeks**: 94/49

Switch from **EFV-TDF-FTC** to **RPV-TDF-FTC**

GS-264-0111: Result

Week 24: Change in Plasma Lipids from Baseline

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Change from Baseline Median (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>-17</td>
</tr>
<tr>
<td>LDL</td>
<td>-8</td>
</tr>
<tr>
<td>HDL</td>
<td>-2</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-26</td>
</tr>
</tbody>
</table>

Conclusions: “Switching from EFV/FTC/TDF to RPV/FTC/TDF was a safe, efficacious option for virologically suppressed HIV-infected patients with efavirenz intolerance wishing to remain on a single tablet regimen.”
Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

SPIRIT STUDY
Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Study Design

Study Design: SPIRIT STUDY

- **Background**: Open label, randomized phase 3b trial evaluating switching from ritonavir-boosted PI plus 2 NRTIs to single-tablet regimen of rilpivirine-tenofovir DF-emtricitabine once daily

- **Inclusion Criteria** (n = 476)
 - Age ≥18 years
 - HIV RNA <50 copies/mL for >6 months
 - On PI/r ≥6 months
 - No known resistance to study drugs

- **Treatment Arms**
 - Rilpivirine-tenofovir DF-emtricitabine
 - Ritonavir-boosted PI + 2 NRTIs x 24 weeks, then rilpivirine-tenofovir DF-emtricitabine

Immediate Switch Arm
RPV-TDF-FTC QD
(n = 317)

Delayed Switch Arm
Pl/r + 2 NRTIs x 24 weeks, then RPV-TDF-FTC QD
(n = 159)

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Study Design

<table>
<thead>
<tr>
<th>Baseline Antiretroviral Regimens</th>
<th>Immediate Switch Arm (n = 317)</th>
<th>Delayed Switch Arm (n= 159)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTI at Screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF-FTC</td>
<td>80.4%</td>
<td>81.8%</td>
</tr>
<tr>
<td>ABC-3TC</td>
<td>13.2%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Ritonavir-Boosted PI at Screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>38.5%</td>
<td>34.0%</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>30.6%</td>
<td>36.5%</td>
</tr>
<tr>
<td>Darunavir</td>
<td>19.9%</td>
<td>20.8%</td>
</tr>
<tr>
<td>Fosamprenavir</td>
<td>7.9%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>1.9%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Result

Week 24 Virologic Response (Intent-to-Treat Analysis)

![Bar chart showing virologic response at week 24 for RPV-FTC-TDF and PI/r + 2NRTIs.](chart.png)

Baseline HIV RNA Level

- **Overall**: 94/90
- **≤100,000 copies/mL**: 95/89
- **>100,000 copies/mL**: 95/92

HIV RNA <50 copies/mL (%)

- **Overall**: 297/317
- **≤100,000 copies/mL**: 155/163
- **>100,000 copies/mL**: 125/131

Source: Palella FJ, et al. AIDS. 2014;28:335-44.
Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Result

Virologic Failure (HIV RNA ≥50 copies/mL) at Weeks 24 and 48

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen
Spirit: Result

Week 24: Change in Plasma Lipids from Baseline

<table>
<thead>
<tr>
<th></th>
<th>RPV-FTC-TDF</th>
<th>PI/r + 2NRTIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>-25</td>
<td>-1</td>
</tr>
<tr>
<td>LDL</td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-53</td>
<td>3</td>
</tr>
<tr>
<td>HDL</td>
<td>-6</td>
<td>1</td>
</tr>
</tbody>
</table>

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Week 48: Change in Plasma Lipids from Baseline

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Immediate Switch</th>
<th>Delayed Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>-24</td>
<td>-24</td>
</tr>
<tr>
<td>LDL</td>
<td>-16</td>
<td>-14</td>
</tr>
<tr>
<td>HDL</td>
<td>-64</td>
<td>-80</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-2</td>
<td>-4</td>
</tr>
</tbody>
</table>

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Result

Week 48 Virologic Outcomes in Patients with Resistance Mutations*

<table>
<thead>
<tr>
<th>Status</th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virologic Suppression</td>
<td>83</td>
</tr>
<tr>
<td>Virologic Failure</td>
<td>2/35</td>
</tr>
<tr>
<td>No Data in Window</td>
<td>4/35</td>
</tr>
</tbody>
</table>

*Pre-existing NRTI or NNRTI resistance mutations by baseline proviral DNA or historical RNA genotype

Conclusion: “Switching to the STR RPV/FTC/TDF from an RTV-boosted protease inhibitor regimen in virologically suppressed, HIV-1-infected participants maintained virologic suppression with a low risk of virologic failure, while improving total cholesterol, LDL, and triglycerides.”

Switch to RPV-TDF-FTC from Ritonavir-boosted PI Regimen

Spirit: Patient-Reported Outcomes

<table>
<thead>
<tr>
<th>Symptom</th>
<th>PI/r + 2NRTIs</th>
<th>RPV-TDF-FTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Sex problems</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>Muscle pain</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Bloating</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>Headache</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Skin Problems</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>Anxiety</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Sadness</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Nausea</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Memory Loss</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>Fever</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>Fatigue</td>
<td>46</td>
<td>17</td>
</tr>
</tbody>
</table>

Occurrence of HIV-Related Symptoms (%)

Conclusions: “These data suggest that switching to the STR RPV/FTC/TDF from a PI-based multi-pill regimen is associated with greater patient-reported treatment satisfaction and improved tolerability in HIV-1-infected, virologically suppressed individuals.”
Switch RPV-TDF-FTC from NVP-Based Regimen

NEAR-Rwanda Trial
Switch to RPV-TDF-FTC from NVP-Based Regimen

NEAR-Rwanda: Study Design

Study Design: NEAR-Rwanda Study

- **Background:** Randomized, open-label, single-center, non-inferiority study conducted in Rwanda to evaluate a switch from a NVP-based regimen to a single tablet regimen of RPV-TDF-FTC

- **Inclusion Criteria (n = 150 enrolled)**
 - Rwandan adults with HIV-1 infection
 - HIV RNA <50 copies/mL within 12 months of screening and at screening visit
 - On NVP + lamivudine + 2nd NRTI ≥12 months
 - No prior virologic failure
 - No prior ART change except NRTI substitution
 - eGFR >60 mL/min and Hemoglobin >8 g/dL
 - No active TB or pregnancy

- **Treatment Arms (2:1 randomization)**
 - Continue NVP + 2 NRTI’s
 - Switch to RPV-FTC-TDF

Switch Arm
RPV-TDF-FTC
(n = 99)

Continuation Arm
NVP + 2 NRTI’s
(n = 51)

Switch to RPV-TDF-FTC from NVP-Based Regimen NEAR-Rwanda: Results

24 Week Virologic Response (FDA Snapshot Analysis)

Switch to RPV-TDF-FTC from NVP-Based Regimen
NEAR-Rwanda: Results

Week 24: Change in Plasma Lipids from Baseline

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean change from baseline (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>-16.6</td>
</tr>
<tr>
<td>LDL</td>
<td>-2.8</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-9.2</td>
</tr>
<tr>
<td>HDL</td>
<td>-12.0</td>
</tr>
</tbody>
</table>

Conclusions: “A switch from nevirapine-based ART to rilpivirine-emtricitabine-tenofovir disoproxil fumarate had similar virologic efficacy to continued nevirapine-based ART after 24 weeks with few adverse events.”
HIV-HCV COINFECTION

Rilpivirine-Tenofovir DF-Emtricitabine
Rilpivirine-TDF-FTC in HIV-HCV Coinfected Patients

hEPAtic Study
Rilpivirine-TDF-FTC in HIV-HCV Coinfected Patients

hEPAtic: Design

Study Design: hEPAtic STUDY

Background: Retrospective, case-control study to evaluate the hepatic safety (as measured by frequency of transaminase and total bilirubin elevations) of rilpivirine-tenofovir DF-emtricitabine once daily in HIV-HCV-coinfected patients.

Inclusion Criteria (n = 519)
- Age >18 years
- Chronic HCV (detectable HCV RNA)
- Starting new antiretroviral (ART) regimen

Treatment Arms
- EPA Group: Rilpivirine-tenofovir DF-emtricitabine
- Control Group: Other new antiretroviral regimen

EPA group
- RPV-TDF-FTC (n = 173)

Control Group
- Other ART Regimen (n = 346)

EPA = rilpivirine-tenofovir DF-emtricitabine (*Complera*)

Rilpivirine-TDF-FTC in HIV-HCV-Coinfected Patients

hEPAtic: Patient characteristics

<table>
<thead>
<tr>
<th>Antiretroviral Drug</th>
<th>Initiated ART (%)</th>
<th>Antiretroviral Drug</th>
<th>Initiated ART (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenofovir DF-emtricitabine</td>
<td>21.7</td>
<td>Efavirenz</td>
<td>9.5</td>
</tr>
<tr>
<td>Abacavir-lamivudine</td>
<td>12.4</td>
<td>Nevirapine</td>
<td>2.9</td>
</tr>
<tr>
<td>Other NRTI combinations</td>
<td>11</td>
<td>Etravirine</td>
<td>8.7</td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>4.3</td>
<td>Raltegravir</td>
<td>13</td>
</tr>
<tr>
<td>Atazanavir/ritonavir</td>
<td>13.9</td>
<td>Maraviroc</td>
<td>6.9</td>
</tr>
<tr>
<td>Darunavir/ritonavir</td>
<td>32.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rilpivirine-TDF-FTC in HIV-HCV-Coinfected Patients
hEPAtic: Result

Frequency of Severe Hepatic Toxicity

<table>
<thead>
<tr>
<th>Marker of Severe Hepatic Toxicity</th>
<th>RPV-TDF-FTC</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3-4 Transaminase Elevations (TE)</td>
<td>2/173 (1.2%)</td>
<td>11/346 (3.2%)</td>
</tr>
<tr>
<td>Grade 4 Total Bilirubin Elevations (TBE)</td>
<td>1/173 (0.6%)</td>
<td>8/346 (2.3%)</td>
</tr>
</tbody>
</table>

Grade 3 TE = ALT or AST 5-10x ULN; Grade 4 TE = ALT or AST > 10x ULN; Grade 4 TBE: total bilirubin ≥ 5 mg/dL

Rilpivirine-TDF-FTC in HIV-HCV-Coinfected Patients

hEPAtic: Result

Discontinuation, Decompensation, and Death

Rilpivirine-TDF-FTC in HIV-HCV-Coinfected Patients

hEPAtic: Result

Grade 3-4 Transaminase Elevation, by Degree of Hepatic Fibrosis

Rilpivirine-FTC-TDF in HIV-HCV Coinfected Patients

hEPAtic: Result

Grade 3-4 Transaminase Elevation, by Presence of Cirrhosis

Conclusion: “The frequency of severe liver toxicity in HIV/HCV-coinfected subjects receiving EPA under real-life conditions is very low, TE were generally mild and did not lead to drug discontinuation. All these data suggest that EPA can be safely used in this particular subpopulation.”

NONOCCUPATIONAL PEP

Rilpivirine-Tenofovir DF-Emtricitabine
Rilpivirine-Tenofovir DF-Emtricitabine as PEP in MSM

EPEP Study
RPV-TDF-FTC as Postexposure Prophylaxis in MSM
EPEP: Study Design

Study Design: EPEP Study

- **Background:** Open-label, single-arm study evaluating the adherence and efficacy of RPV-TDF-FTC as a single-tablet regimen for PEP in men who have sex with men (MSM)

- **Inclusion Criteria** (n = 100)
 - Age ≥18 years
 - Healthy MSM without HIV infection
 - Eligible for 3-drug PEP based on exposure risk
 - No resistance to study drugs
 - No previous RPV-TDF-FTC for PEP
 - No hepatitis B infection

- **Postexposure Prophylaxis Regimen**
 - Rilpivirine-tenofovir DF-emtricitabine

Timeline
- **Week 0**
- **Week 12**

Graph
- **RPV-TDF-FTC**
 - (n = 100)

Week 4: PEP Completion or Premature Cessation

Patients (%)

PEP completion | Lost to follow-up | Cessation due to adverse event | Cessation due to study burden

92% | 6% | 1% | 1%

RPV-TDF-FTC as Postexposure Prophylaxis in MSM

EPEP: Result

Week 4: Adherence to 28-day PEP Regimen

Number of cases of HIV acquisition at week 12:
Conclusions: “A single-tablet regimen of FTC-RPV-TDF was well tolerated as once-daily PEP, with high levels of adherence and completion.”

Acknowledgment

The National HIV Curriculum is an AIDS Education and Training Center (AETC) Program supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling $800,000 with 0% financed with non-governmental sources. This project is led by the University of Washington’s Infectious Diseases Education and Assessment (IDEA) Program.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by HRSA, HHS, or the U.S. Government.